рефераты
рефераты
Главная
Рефераты по рекламе
Рефераты по физике
Рефераты по философии
Рефераты по финансам
Рефераты по химии
Рефераты по цифровым устройствам
Рефераты по экологическому праву
Рефераты по экономико-математическому моделированию
Рефераты по экономической географии
Рефераты по экономической теории
Рефераты по этике
Рефераты по юриспруденции
Рефераты по языковедению
Рефераты по юридическим наукам
Рефераты по истории
Рефераты по компьютерным наукам
Рефераты по медицинским наукам
Рефераты по финансовым наукам
Психология и педагогика
Промышленность производство
Биология и химия
Языкознание филология
Издательское дело и полиграфия
Рефераты по краеведению и этнографии
Рефераты по религии и мифологии
Рефераты по медицине
Рефераты по сексологии
Рефераты по информатике программированию
Рефераты по биологии
Рефераты по экономике
Рефераты по москвоведению
Рефераты по экологии
Рефераты по физкультуре и спорту
Топики по английскому языку
Рефераты по математике
Рефераты по музыке
Остальные рефераты
Рефераты по авиации и космонавтике
Рефераты по административному праву
Рефераты по безопасности жизнедеятельности
Рефераты по арбитражному процессу
Рефераты по архитектуре
Рефераты по астрономии
Рефераты по банковскому делу
Рефераты по биржевому делу
Рефераты по ботанике и сельскому хозяйству
Рефераты по бухгалтерскому учету и аудиту
Рефераты по валютным отношениям
Рефераты по ветеринарии
Рефераты для военной кафедры
Рефераты по географии
Рефераты по геодезии
Рефераты по геологии
Рефераты по геополитике
Рефераты по государству и праву
Рефераты по гражданскому праву и процессу
Рефераты по делопроизводству
Рефераты по кредитованию
Рефераты по естествознанию
Рефераты по истории техники
Рефераты по журналистике
Рефераты по зоологии
Рефераты по инвестициям
Рефераты по информатике
Исторические личности
Рефераты по кибернетике
Рефераты по коммуникации и связи
Рефераты по косметологии
Рефераты по криминалистике
Рефераты по криминологии
Рефераты по науке и технике
Рефераты по кулинарии
Рефераты по культурологии
Рефераты по зарубежной литературе
Рефераты по логике
Рефераты по логистике
Рефераты по маркетингу
Рефераты по международному публичному праву
Рефераты по международному частному праву
Рефераты по международным отношениям
Рефераты по культуре и искусству
Рефераты по менеджменту
Рефераты по металлургии
Рефераты по налогообложению
Рефераты по педагогике
Рефераты по политологии
Рефераты по праву
Биографии
Рефераты по предпринимательству
Рефераты по психологии
Рефераты по радиоэлектронике
Рефераты по риторике
Рефераты по социологии
Рефераты по статистике
Рефераты по страхованию
Рефераты по строительству
Рефераты по схемотехнике
Рефераты по таможенной системе
Сочинения по литературе и русскому языку
Рефераты по теории государства и права
Рефераты по теории организации
Рефераты по теплотехнике
Рефераты по технологии
Рефераты по товароведению
Рефераты по транспорту
Рефераты по трудовому праву
Рефераты по туризму
Рефераты по уголовному праву и процессу
Рефераты по управлению

Контрольная работа: Вычисление наибольшей прибыли предприятия


Контрольная работа: Вычисление наибольшей прибыли предприятия

Содержание

Задача 1. 2

Задача 2. 4

Задача 3. 6


Задача 1

Пусть х (млн. шт.) – объем производства, С(х)=2х3-7х и D(x)=2х2+9х+15 – соответственно функция издержек и доход некоторой фирмы. При каком значении х фирма получит наибольшую прибыль π(х)? какова эта прибыль?

Решение

Прибыль фирмы является разницей между доходом и издержками фирмы:

,

,

.

Найдем наибольшее значение прибыли путем нахождения максимума функции .

 - не удовлетворяет условию задачи,

.


График функции прибыли представлен на рисунке 1.

Рисунок 1 - График функции прибыли

Как видно из рисунка 1, функция прибыли  в точке х=2 достигает максимального значения. Следовательно, фирма получает наибольшую прибыль при объеме производства 2 млн. шт. и эта прибыль составляет:

 млн. у.е.

Ответ: наибольшую прибыль фирма получит при объеме производства 2 млн. шт. и эта прибыль составит 39 млн. у.е.


Задача 2

Заданы: функция прибыли , где х1 и х2 – объемы некоторых ресурсов; цены р1=1 и р2=1 за единицу каждого ресурса соответственно (в некоторых у.е.); бюджетное ограничение I=150 на затраты по приобретению указанных ресурсов (в тех же у.е.). При каких значениях объемов используемых ресурсов фирма–производитель получит наибольшую прибыль?

Решение

Задача сводится к поиску максимума функции  при существовании ограничения :

при .

,

.

Найдем максимум функции графически.


Рисунок 2 – График функции

Как видно, функция достигает максимального значения при х1=90.

,

.

Ответ: фирма–производитель получит наибольшую прибыль при объемах ресурсов х1=90 и х2=60.


Задача 3

Задана парная выборка из 10 пар значений случайных велbчин X и Y (таблица 1).

Таблица 1 – Исходные данные

х у
1 5 70
2 11 65
3 15 55
4 17 60
5 2 50
6 22 35
7 25 40
8 27 30
9 30 25
10 35 32

1)         Изобразите корреляционное поле случайных величин X и Y.

2)         Вычислите основные числовые характеристики случайных величин X и Y: их математические ожидания и дисперсии, средние квадратические отклонения и размах вариации.

3)         Найдите их совместные числовые характеристики: ковариацию, коэффициент корреляции.

4)         С помощью найденных характеристик составьте уравнение линейной регрессии Y на X.

5)         Составьте уравнение линейной регрессии X на Y.

6)         Нанесите найденные уравнения на корреляционное поле; найдите точку пересечения полученных линий регрессии.

7)         Вычислите стандартные ошибки коэффициентов регрессии b0 и b1.

8)         Проверьте гипотезы о статистической значимости коэффициентов регрессии b0 и b1.

9)         Вычислите с надежностью 0,95 интервальные оценки коэффициентов b0 и b1 регрессии Y на X.

10)      Найдите коэффициент детерминации R2 и поясните смысл полученного результата.

Решение.

1)         Корреляционное поле случайных величин X и Y

2)         Основные числовые характеристики случайных величин X и Y: их математические ожидания и дисперсии, средние квадратические отклонения и размах вариации

Таблица 2 – Вспомогательные расчеты

х у

х2

y2

xy
1 5 70 25 4900 350
2 11 65 121 4225 715
3 15 55 225 3025 825
4 17 60 289 3600 1020
5 2 50 4 2500 100
6 22 35 484 1225 770
7 25 40 625 1600 1000
8 27 30 729 900 810
9 30 25 900 625 750
10 35 32 1225 1024 1120
сумма 189 462 4627 23624 7460
средн 18,9 46,2 462,7 2362,4 746

Математическое ожидание:

,

.

Дисперсия:

,

.

Среднеквадратическое отклонение:

,

.

Размах вариации:

,

.

3)         Совместные числовые характеристики: ковариацию, коэффициент корреляции


Ковариация:

.

Коэффициент корреляции:

.

4)         Уравнение линейной регрессии Y на X

,

,

.

5)         Уравнение линейной регрессии X на Y

,

,

.

6)         Нанесите найденные уравнения на корреляционное поле; найдите точку пересечения полученных линий регрессии


Точка пересечения (18,4;46,9).

7)         Стандартные ошибки коэффициентов регрессии b0 и b1

Таблица 3 – Вспомогательные расчеты

х у x' y'

x-xcp

y-ycp

(x-xcp)2

(y-ycp)2

1 5 70 5,572 62,975 -13,028 16,775 169,7288 281,4006
2 11 65 8,3645 55,745 -10,2355 9,545 104,7655 91,10702
3 15 55 13,9495 50,925 -4,6505 4,725 21,62715 22,32562
4 17 60 11,157 48,515 -7,443 2,315 55,39825 5,359225
5 2 50 16,742 66,59 -1,858 20,39 3,452164 415,7521
6 22 35 25,1195 42,49 6,5195 -3,71 42,50388 13,7641
7 25 40 22,327 38,875 3,727 -7,325 13,89053 53,65563
8 27 30 27,912 36,465 9,312 -9,735 86,71334 94,77023
9 30 25 30,7045 32,85 12,1045 -13,35 146,5189 178,2225
10 35 32 26,795 26,825 8,195 -19,375 67,15803 375,3906
сумма 189 462 188,643 462,255 2,643 0,255 711,7565 1531,748
средн 18,9 46,2 18,8643 46,2255 0,2643 0,0255 71,17565 153,1748

Для линии регрессии Y на X:

,

,

.

Для линии регрессии X на Y:

,

,

.

8)         Проверка гипотезы о статистической значимости коэффициентов регрессии b0 и b1

Для α=0,05 и k=n-1-1=8 значение критерия Стьюдента t=2,31

Для линии регрессии Y на X:

, коэффициент значим,

, коэффициент значим.


Для линии регрессии X на Y:

, коэффициент значим,

, коэффициент значим.

9)         Вычисляем с надежностью 0,95 интервальные оценки коэффициентов b0 и b1 регрессии Y на X

Доверительный интервал для b0:

<a0<,

<a0<,

54,97<a0<83,03.

Доверительный интервал для b1:

<a1<,

<a1<,

-1,23<a1<-1,17.

10)      Коэффициент детерминации R2 :

.


Коэффициент детерминации R2=0,6724 показывает, что вариация параметра Y на 67,24% объясняется фактором Х. Доля влияния неучтенных факторов – 32,76%.



© 2009 РЕФЕРАТЫ
рефераты